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Abstract

With the notation K := R (mod 2x),

el = ([ 10 cﬂw’mdﬂb - (L /w|d0w

we prove the following result.
Theorem 1. Assume that p is a trigonometric polynomial of degree at most n with real
coefficients that satisfies

1Pl ) < AR and ||| ) > B,

Then
Mu(p) — Ma(p) ZeMa(p)

with
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We also prove that
M (1+2p) = Ma(1+2p) > (V373 = 1) Ma(1 + 2p)
and
M (p) — Mi(p)=107"" M (p)

for every p € .o/, where .o/, denotes the collection of all trigonometric polynomials of the form

p() pVI Z[IJCOS jt+0(l) a/:il7 O(IGIR
J=1
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1. Introduction

We give shorter and more direct proofs of some of the main results from
Littlewood’s papers [Li-61,Li-64,Li-66a,Li-66b,Li-68]. There are two reasons for
doing this. First our approaches are, we believe, much easier, and secondly they lead
to explicit constants. Littlewood himself remarks that his methods were “‘extremely
indirect.”” Motivation and discussion of these types of results may be found in [Bo-
02]. Kahane’s paper [Ka-85] is also central among those related to the subject of this

paper.

2. New results

We use the notation K =R (rln/(i)d 27). Let P
1
ol = ([ oo ar) o i) = (o [0 ar)

Theorem 1. Assume that p is a trigonometric polynomial of degree at most n with real
coefficients that satisfies

191l 1) < An'? (1)
and

191l k) = B2, (2)
Then

Mu(p) — Ma(p) ZeMa(p)
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("

Let the Littlewood class .7, be the collection of all trigonometric polynomials of
the form

with

n

p(t) =pa) =Y ajeos(ji + ), @ =1, ek
=

Note that for the Littlewood class .27, we have
12
E — 3
Y .

Corollary 2. We have
M;(p)

Ma(p) = Mo(p) > 5075

for every pe.of,. The merit factor

(-

is bounded above by 20230 for every pe.o/,,.

If Q, is a polynomial of degree n of the form
On(z) = Z az*, aeC,
k=0

and the coefficients a; of Q, satisfy
ay =au_y, k=0,1,...,n,
then we call Q, a conjugate-reciprocal polynomial of degree n. We say that the

polynomial Q, is unimodular, if |ax| =1 for each k=0,1,2,...,n. Note that if
pe s/, then

1 4 2])(1) _ einthn(eit)

with a conjugate-reciprocal unimodular polynomial Q,, of degree exactly 2n. One
can ask how flat a conjugate reciprocal unimodular polynomial can be. Here we
reprove a result of Erdos [Er-62]. His proof is much longer and his constant £>0 is
unspecified. This result has already been recorded in [Er-01].

Theorem 3. Let D denote the unit circle. Let P be a conjugate reciprocal unimodular
polynomial of degree n. Then

max |[P(z)|= (1 +¢&)vn+1
zedD
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with ¢ = \/4/3 — 1. As a consequence, we have
M (1+2p) = Ma(1+2p) > (V473 = 1) Ma(1 + 2p)
for every pe.o/,.
In our next theorem we give the numerical value of an unspecified constant

appearing in another main result of Littlewood. In the proof we will need to refer to
only a two-page-long (very clever) piece of Littlewood’s paper [Li-66a].

Theorem 4. We have
My (p) — Mi(p) =107 My (p)
for every pe.o/,.

Based on the fact that for a fixed trigonometric polynomial p the function
.- Alog(M;(p))

is a convex function on [0, c0), we can state explicit numerical values of certain
unspecified constants in some other related Littlewood results. For example, as a
consequence of Theorem 4, we have

Theorem 5. We have
A—=2 1
loe (1) ~ log(Ma(p)) > 2o ([ — g7 ) 42

and

2—2 1
log(M>(p)) — log(M;(p))= 7 log(1 — 1031>, 1<A<2,
for every pe.o/,.
3. Proofs

Proof of Theorem 1. For the sake of brevity let u, = u,(p) = M>(p). Note that
Bernstein’s inequality in L,(K) implies B<A. Without loss of generality we may
assume that

1117.4x) <2733 5. (3)

Then by the Bernstein Inequality for trigonometric polynomials in Ls(K) we can
deduce that

33 1/4 33 1/4
, 1/4 NYEE] 3/2
1P <rlbllg<n(3) o) m<a () an

Hence, combining this with (2) and Holder’s Inequality, we obtain

- 33 1/3
B < [ 17 0F <1 1 <V () 4
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Therefore
1/3 (64\1/3 2
) I,
A4/3
that is
1/2(64)1/233
2 <l
Combining this with (1), we have
4 1/2(64)1/233
ynp, <yn G Vins——3 <Pl )
with
1/2
o (%) P2np
P
Now let

o . . 2 Yly 2
E = E(np,y) = e [0,2n): (p(0)] - )" > (2)" £
Estimating the total variation of p on $[0,2n]\E in the usual way, using Holder’s

Inequality and then Bernstein’s Inequality for trigonometric polynomials in L,(K),
we can deduce that

2n
mm</|ﬂmm</ \ﬂmm+/wmw
0 [O,Zn]\E E

) 12
<2'@¢VT%%4i/|ﬂ0ﬂm<%”%4‘Vm@3<AU“02do
12
—nun +/m </ ()l dt> %nﬂn +V/m(E)n(2m)' .

Hence
%nun <V/m(E)n(2m)'*p,,

that is
22
B = —<m(E) (4)
So we have
2n(My(p)* — Ma(p)*) =IIpll1, k) — 27t

2n

(p(t) — 12)* dt
YNZ 2V (VN2 5
> pLL > 7n
/”’(E>(16) M”/Sn(l6) Mo

1 [128\* ,/B\" ,
“aiig\33 ) " \4) B
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Combining this with (3) we obtain

w52 (2) () ),

and the theorem is proved. Here we used the inequality “My(p)* — Ma(p)*=
(My(p) — M>(p))4M,(p)*> which is a consequence of the Mean Value Theorem.

1 128\ * 1
Note that — <2742} <——. O
ote that 117 (33) T STo

Proof of Theorem 3. Let P be a conjugate reciprocal unimodular polynomial of
degree n. To prove the statement, observe that Malik’s inequality [MMR, p. 676]
gives
n
ax |P'(z)| <z max |P(2)).
max | P'(z)| <5 max | P(z)]
(Note that the fact that P is conjugate reciprocal improves the Bernstein factor for P

on 9D from n to n/2.) Using the fact that each coefficient of P is of modulus 1, then
applying Parseval’s formula and Malik’s inequality, we obtain

5 2

e Dot B = [ PP e <an(5) s PGP,
and

max |P(z)|>/4/3Vn+ 1
follows. O

Proof of Theorem 4. Let pe.oZ,,. For the sake of brevity let y, .= p,(p) = Ma(p). Let
N(p,v) be the number of real roots of p — vy, =0 in (—mn,n). Littlewood proves
(see [Li-66a, Theorem 1(i)]) that if pe.oZ,, and

1 2n

— 1) dt =
3 ) 0ldi=cn,

then

N(p,v)=2""%"n  |v|<273.
The reader may wish to find this lower bound hidden in the proof of Theorem 1(i) of
Littlewood’s paper [Li-66a]. Hence, estimating the total variation of p on K in the
usual way, we obtain ynu, <||p/||,, k) with y = 272c". If ¢<27!/!, then the proof

of the theorem is finished. If ¢=>2""/1% then y>2"2!, so in the sequel we may assume
that y>272! holds. Now let

E=En,p,y) = {’E [0,2m): (Ip(1)] — ,)*> (/1%)2}
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Estimating the total variation of p on $[0, 27]\E using Holder’s Inequality and then
Bernstein’s Inequality for trigonometric polynomials in L,(K), we can deduce that

2n
gty < / P (1) di< / (0] dt + / 7 (0)] d
0 [0,27]\E E

) 1/2
<20+ [ WOldhm, + VB [ 08 @)
12

< S + v/t / (OF di) <Ly + Bz i,

So we have

2n
4n(Ma(p))? — Ma(p) My (p)) = /0 (1p()] — )

" 2
>mie)(fe) >4 (58)
4
=31

lun/2 95 lun'

This implies
Ms(p) = Mi(p) 227" Tn > Ms(p),

and the theorem is proved. [J
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